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Abstract

Random set theory provides a convenient mechanism for
representing uncertain knowledge, including probabilistic
and set-based information, and extending it through
functional relationships. Where the available information
is in terms of lower and upper bounds on a set of
probability measures these bounds will not necessarily
correspond respectively to belief and plausibility
functions. In his case when a random set cannot be
obtained from the Mobius inversion we propose an
Iterative Rescaling Method for constructing a random set
with corresponding belief and plausibility functions that
are a close outer approximation to the lower and upper
probability distributions. In situations where information
about an uncertain input parameter comes from more
than one source, approaches to information fusion based
on averaging, Dempster’s rule of combination and a set
union version of Dempster’ srule are discussed.

Keywords. Random set theory, belief and plausibility
functions, Mobius inversion, Iterative Rescaling Method

1 Random sets

Random set theory provides a genera mechanism for
handling interval-based measurements, fuzzy sets and
discrete probability distributions. Following Dubois and
Prade (1990, 1991), a finite support random set on a
universal set Xisapair (A, m) and amass assignment is
a mapping

m:A ® [0,1] (1)
such that m(&) = 0 and
a mA =1 2

Each set Al A contains the possible values of a variable
xI X, and m(A) can be viewed as the probability that xI A
but does not belong to any special subset of A. Given a
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random set (A, m), a belief function Bel (Shafer, 1976)
can be defined as the following set function

" Al X, Bel(A) = § m(B) 3)

Bi A
and its dual plausibility function PI(A) is defined by
" Al X, PI(A) = 1- Bel(A) (4)

Bel (A) can be viewed as the lower bound on a family of
probability measures and PI(A) as the upper bound,
although the converse is not tue, i.e. upper and lower
probability functions are more general than belief and
plausibility functions. When A contains only singletons
Bel =PI is aprobability measure (with finite support).

When A isanested family A;l Ayl ...1 A,thenBelisa
necessity measure ? and Pl is a possibility measure p
(Zadeh 1978), and the random set is said to be
consonant. A fuzzy set F can be defined from any
random set (A, m) as follows:

"x, M) =§ m(A)=Pl{x)=p{x) (5)

xi A

where nt is the fuzzy membershipinF.

2 Extending random  sets

functional relations

Let g be a mapping X;" ... X\® Y. Let x,...x, be
variables whose values are incompletely known. The
question deat with in the Challenge Problems of
Oberkampf et al. (2001) is to find the range of the
variable y = g(x) : X = 1,..Xn), and, where sufficient
information exists to do so, a probability distribution
over the range of y, from the available information
restricting the values of x,...x,. In the Challenge
Problems each of the variables is specified as being
independent, but we first address the general case, where
the dependency between (x,...xn) can be expressed as a

through



random relation R, which is a random set (A, r) on the
Cartesian product X;" ...” X, in which case the range of y
isthe random set (A, m) such that:

A={yR)IRT A}, yR)={yx)IxI R}  (6a)
mA) = § r(R) (6b)

A=Y(R)

Specia cases of Equations (6) for (i) set-valued variables
(i) consonant random Cartesian products (iii)
stochastically decomposable Cartesian products and (iv)
joint probability distributions, were addressed by Dubois
and Prade (1991). In the case of consonant random sets
the extension principle for fuzzy sets applies (Zadeh,
1975) and the image of the random relation R can be
constructed from the images of the level cuts of R.

In general Equations (6) involve calculating the image of
each foca element R, 1 A, by applying twice the
techniques of global optimisation. If the focal elements
of R; are compact sets and g isacontinuousfunction

gR) = Ni.ui (7)
where

I = min g(x) (8)
U =max g(x) (9)

When each parameter % is specified by a margina
random set, whose focal elements are each an interva [I;,
ui], then methods of interval analysis (More 1966) are
applicable.

Under certain special conditions the Vertex method
(Dong and Shah 1987) applies and can be used to greatly
reduce computational expense. Suppose each foca
element R of the random relation (A, r) is a p-
dimensional box, whose 2" vertices are indicated asvj, j =
1,..., 2. 1f y = ¢x) is continuous in R and also no
extreme points exist in this region (including its
boundaries), then

R)= [mlin{ g(v;):j=1..2"}, 0
9= maxg(v,): ] =1..2}]

Thus function f has to evaluated 2' times for each focal
element R;. This computational burden can be further
reduced if g is continuous, its partial derivatives are
continuous and if g is astrictly monotonic function with
respect to each parameter %, in which case

$lvi1g(v) = mjin{g(vj): j=1..2"} (11)

$ivic i g(w) = mex{g(vk) k=1..2"} (12)

and v and v can be identified merely by consideration of
the direction of increase of g. Thusg hasto be calculated
only twice for each focal element R (Tonon et al . 2000).

3 Random set approximationsto lower and
upper probability distributions

Consider the distribution of a continuous random
variable x. By definition

Pr(xl A) = ¢)f (x,a)dx (13)

where f is a probability density function and aisavector
of parameters of f, a = [ay, ay,..., a,]. The cumulative
distribution function F(x) is

F(X) =Pr(x =x) = Xéf (t,a)dt (14)

¥

Definition 1: If each parameter a; in a is specified by a
closed interval [l;, u] then a is constrained by an n-
dimensional box Q. We define the lower probability
P: (A) as the capacity functional

P« (A) = L ng E‘)f (x,adx, " AT P(X) (15)

vvkhere P(X) is the power set of X. The upper probability
P (A)is

P (A)=supg)f (x a)dx, " AT P(X) (16)
aQ ,

P-(A) and P" (A) will be located at the same value of a,
so P«(A)=1 - P (A) and it suffices to consider lower
probabilities. The capacity P-(A) as defined by Equation
(15) is not necessarily a belief function.

Lemma 1. (see Shafer 1976 for proof) Suppose X is a
finite set and r and s are functions on the power set P(X),
then

r(A)=§ s(B) (17)
forall AT Xif and only if
S(A=§ (-)"%r(B). (18)

where |A-B| denotes the cardinality of the set A-B i.e.
|AC B|. Equation (18) is referred to as the Mobius
inversion. Observing that Equation (17) is equivalent to
the definition of a belief function Bd from a mass
assignment m (Equation (3)), Shafer (1976) proposed the
use of the Mobius inversion as a general mechanism for
reconstructing mfrom Bel i.e.



m(A) = & (-1"°"Bel(B) (19)
Bl A

Lemma 2: Suppose that r is an unknown function on

P(X) i.e. not necessarily a belief function, if the function

s generated from Equation (18) conforms to the axioms

of amass assignmenti.e.

a s =1 (20)
and
s(A) 30" Al X (21)

(and s(d) is automatically equal to zero), then sis a mass
assignment mand r isabelief function Bel.

Lemma 2 provides a mechanism for establishing whether
the capacity functional P- defined by Equation (15) is a
belief function. If application of Equation (15) does not
yield a mass assignment then P« is not a belief function.

Example 1. Consider the following example in which X

={a, b,c} and .
P.({a})=0 P ({a}) =06
P.({b})=0 P ({b}) =06
P.({c}) =0 P ({c}) =06
P.{ab})=04 P{ab})=1
P.fac})=04 P{ac})=1
P.({bc})=04 P({bc})=1

Notice that the sets of constraints are consistent since
they are, for example, satisfied by the probability
distribution P({a}) = 04, P({b}) = 04, P({c}) = 0.2
Applying the Mdbius inversion to the singletons gives
m{a}) = m({b}) = m({c}) = 0. Next considering sets
with cardinality 2 we obtain m({a,b}) = 04, m{ac }) =
0.4 and m({b,c }) = 0.4, giving a sum greater than 1, so
the condition in Equation (20) has been violated. If the
Mobius inversion is applied at cardinality 3 a negative
massm{a,b,c}) = -0.2 is obtained.

In order to use Equations (6) for projecting uncertainty
through some function g we require a mechanism for
constructing a random set that is consistent with the
probability bounds in Equations (15) and (16). In other
words, we require a belief function that approximates P-
from below such that Bd(A) = P-(A) " Al X. It would
also be desirable if the constraints generated by this
belief measure and its associated plausibility measure
where as close as possible to the original upper and lower
probabilities. In the sequel we adopt the following
measure of accuracy E for a belief function Bd
approximating P :
1

E(Bel) = 77 aRM®- Baw) (22)

In the case that we have coherent upper and lower
probabilities then this measure has the pleasant property
that

1

X

a (R - Bd(A)

m

(Bel) =

270 A x
:%é (- P (B)- 1+ F>|(K)):2|1XI aP@-r®)
- 2|1X -8 Piay- P ) (29

Notice that for Example 1 any belief function consistent
with P. must have a mass assignment of the following
form:

subject to x,y,z£ 04 and x+y+z£1. In this case the
error associated with any consistent belief function is
given by:

E(Bel):%((OA- x)+(0.4- y)+(04- 2))
1 (24)
25(1.2- (x+ y+z))

and thisis clearly minimal for any mass assignment such
that x+y+z=1giving avaueof 0.025.

We now propose an algorithm based on a simple
heuristic search for finding a good approximating belief
function (on the basis of E) for R. .

Algorithm: Iterative Rescaling Method (IRM)

Order the subsets of X according to increasing cardinality
and arbitrarily for subsets with the same cardinality.
Specifically, suppose

F=PX)-{A& ={Al =1..., 2X-1}
areordered such that ifi = j then |A| = |A|

1. For A evauatem(A)=P(A)- & m(B)
BIF:BI A
2. 1f m(Ai)3 Othen:
Leti =i+land goto 3
Else:
For al Bl A; determine the largestvalue of k < A
for which

[o]

a MB)EP.(A).
Bl A|BlEK
For al Bi A; with B| = k leave m(B) unchanged.
For al Bl A; with |B|> k rescale m(B) according
to



a mp)¢

EP(A)-
Bi Af|BJEK + (25)

B) = m(B)G 5
m()m()§ 2 mB)

Bl Aj|BJ>k ]

Setm(A) =0, leti =i+1 and goto 3

3. 1fi> 2% - 1then:

Terminate

Else:

Goto 1
It is natural to think of the IRM algorithm as being
implemented in stages where for each stage masses are
calculated according to the Mdbius inversion until a
negative mass occurs. At this point the relevant subsets
are rescaled and the algorithm continues in the next stage
until the next negative value is encountered. The
following table illustrates the IRM algorithm for the
constraints given inExample 1:

Table 1 :IRM applied to Example 1

Mobbius inversion Random set from IRM

m{a}) =0 m{a}) =0
m({b}) =0 m{b})=0
m({c}) =0 m{c}) =0
m{ab}) =04 m{ab}) =
m{ac}) =04 m{ac}) =13
m({b,c}) =0.4 m({b,c}) = 1/3
m{a,b,c}) =-0.2 m{ab,c}) =0

rescalefactor=1/1.2

Given the argument presented earlier we see that in this
case IRM provides a belief function minimising E.

Theorem 1: The IRM algorithm results in a belief
function Bel such that " Al X Bel(A) = P« (A

Proof: (Note: In the following proof we shal abuse
notation slightly and use Bel(A;) to denote é_ m(A;)

Bi A
even thought for intermediate stages of the IRM
algorithm the latter may not formally correspond to a
belief value)

First note that for any m(A)) < Othe rescaling factor

a m(8) /

Bi Aj:|BlEk

e
ER(A)- allm(B)'I [o]

since by definition

R(A)® AamB) andP(A)E § m(B).

Bl Aj|Blek Bl A

Suppose the IRM algorithm requires v rescalings at
A, A, where 1£i, £i, £ £i, £2X - 1. Then we
prove the result by induction on rescalings.

Initial Case For rescaling 1 we have that " j < i1 m(A)

currently has value P.(A;)- é m(B) so that Bel(A) =
Bl Al

P (A)). Since the rescaling factor is always in [0,1] then

rescaling 1 has the effect that "j < i; m(A) either

decreases or remains unchanged and hence " | < iy

Bel(4) = P (A) after rescaling. Furthermore, m(A, ) is

set to zero and the masses of the subsets of A11 are

rescaled such that Be(A)=PR(A). Hence after
rescaling 1 it holds that” j <i; Bel(A) = P« (4).

Inductive Step Suppose that after rescaling t it holds that
"] < iy Bel(d) = P«(A) then after rescaling t+1 " j < iy
m(A;) either decreases or remains unchanged and hence
by the inductive hypothesis” j <i; Bel(A) = P« (A).

i1 (i i) m(A) is unaffected by rescaling t. Before

rescaling t+1 m(A) issetto R(A;)- é m(B) so that
Bl A

Bel(A) = P-(A). Therefore, after rescaling t+1 " j T (i

i) Bel(A) = P«(A;)) since the scaling factor is in [0,1].

Furthermore, after rescaling t+1 Bel(A ) =P (A ) and

t+1

therefore” j = iv+1 Bel(A) = P+(A) asrequired.[]

In order to apply the IRM algorithmto constructing a
random set we discretise X by sampling it over a grid in
order to obtain a discrete random set. Suppose that Xis a
finiteinterval [x, x,]. A s-algebra B can be defined on X
by partitioning [, x;] into s digjoint sub-intervals: [,
X2], (%2, %3],y (%1, Xs), (Xsy %], @ccording to the desired
(or feasible) accuracy. B is therefore a family of 2 sets.
If P~ and P* are continuous distributions, then the
random set on B will be a discrete approximation, and
the accuracy of this approximation will increase with
increasing granularity in the definition of the partition.
However, in practice the error in the IRM is found to
increase slowly with the number of sets in B, so an
optimal partition will balance the effect of these two
approximations.

In order to illustrate the proposed approach a rather
coarse partition has been applied to the interval
[0.1,20.0], as shown in Table 2. The upper and lower
probability distribution on the space corresponds to the
family of lognormal distributions: Inx ~ N(ms) with the
value of the mean mand standard deviation s given by
closed intervals. The set bounds have been chosen so that
even though x ison [0¥], more than 0.9999 of the total



probability mass is contained within these bounds and
the results are accurate to the quoted precision.

Table 2 Partition of the space of X in Example 2

Set Bounds
{a} [0.15, 1.3]
{b} (1.3,2.0]
{c} (2.0,3.0]
{d} (3.0,18.0]

Example 2: Table 3 presents the results where m1

[0.6,0.8] and s T [0.4,0.5]. In this case m(A) was first
less than zero when |Aj| = 3 and rescaling was then

applied four times to subsets of cardinality 2. For this
example the error isE(Bel) = 0.0136. For problems of the
size shown here the error function can be minimised
using an optimisation method, and the result of such an
optimisation is given in the column labelled Mgy, which
gives a belief function with an error of 0.0131. Naturally,
global optimisation is only practical for small scale
problems, but for this example the error from IRM is
reassuringly close to the minimum error.

For finer partitions it becomes impractical to write down
the mass assignment and corresponding belief and
plausibility functions. However, they can be partialy
visualised by plotting the cumulative belief and
plausibility functions as defined below. The remainder of
figuresin this paper adopt thisformat.

Definition 2 Suppose that Xis partitioned into s digoint
sub-intervals ki, %], &2.Xsl,..., (%1.Xs], (Xs, Xs41], @nd
members of the corresponding power set are labelled X; j,
i=1,...,s]=2,...,stl, i>], according to the left and right
hand bounds x; and x;. Note that this notation does not
result in a unique label for every set in P(X) but is
sufficient for the following definitions. We define the
cumulative belief CBel (x) at some point Xin [Xg, Xs] as

CBel(x) = § m(X, ) (26)

3 X
)(XJ

and the cumulative plausibility CPI(x) is defined as
CPI®=Q m(X,,) @7)

The lower and upper cumulative probability distribution
functions, F~(x) and F (X respectively, have the
conventional definitionsi.e.

X

F (9= inf .gf (t,a)dt (28)

and

F (x)=sup ¢ (t, a)dt (29)
dQ g

Cumulative lower and upper probability distributions and
the corresponding bounding cumulative belief and
plausibility functions for a partition o 10 intervals are
illustrated in Figure 1. In this case IRM gives and error
E(Bel) = 0.0260. The computational expense of problems
on this scale can be reduced by applying the fast M6bius
inversion of Thoma (1991).

Table 3 IRM random set approximation to upper and lower probability distribution (Example 2)

Set P P Stagel Stage2 Stage3 Stage4 m Bel P Mg
{a} 0.0895 02498 0.0895 0.0895 0.0895 0.0895 0.0895 0.0895 0.2498 0.0895
{b} 02743 03928 02743 0.2743 0.2743 0.2743 02743 02743 0.3989  0.2743
{c} 0.2668 0.3776  0.2668 0.2668 0.2668 0.2668  0.2668  0.2668  0.3967 _ 0.2668
{d} 01063 02752 0.1063 0.1063 0.1063 0.1063 0.1063  0.1063 0.2893  0.1063
{a, b} 0.3947 05921 0.0310 0.0174 00120 0.0120 0.0120 0.3757 0.6009 _ 0.0189
{a, g 04506 05165 0.0943 0.0530 0.0530 0.0488 0.0488 0.4051 0.5619  0.0240
{a,d} 0.2959 0.4163 0.1001 0.1001 0.0692 0.0638 0.0638  0.2595 0.4396 _ 0.0513
{b,g 05837 07041  0.0427 0.0240 0.0240 0.0240 _ 0.0194  0.5604 0.7405 _0.0106
{b, d} 04835 05494 01029 01029 00711 00711 00575 0.4381 0.5949  0.0608
{c,d} 04079 06053 0.0349 0.0349 0.0349 00321 0.0260 0.3991 0.6243 _ 0.0313
{a,b,c} 07248 0.8937 -0.0736 _0.0000 _0.0000 0.0000 0.0000  0.7107 _ 0.8937 _ 0.0000
{a,b,d} 06224 07332 0.0000 -0.0681 _0.0000 0.0000 0.0000  0.6033 0.7332 _ 0.0212
{a,c,d} 06072 07257 0.0000 0.0000 -0.0123 0.0000 0.0000 0.6011 0.7257 _ 0.0380
{b,c,d} 07502 0.9105 0.0000 0.0000 0.0000 -0.0243 0.0000 _ 0.7502 0.9105 _ 0.0000
{abcdl 1.0000 10000 0.0000 0.0000 0.0000 0.0000 00357 1.0000 1.0000 _0.0069




Table 4 IRM random set approximation to upper and lower probability distribution (Example 3)

*

Set P: P Stage 1 Stage 2 Stage 3 m Bel P
{a} 0.0000 0.9478 0.0000 0.0000 0.0000 0.0000 0.0000 0.9478
{b} 0.0011 0.9688 0.0011 0.0011 0.0011 0.0011 0.0011 0.9688
{c} 0.0000 0.9574 0.0000 0.0000 0.0000 0.0000 0.0000 0.9760
{d} 0.0000 0.4218 0.0000 0.0000 0.0000 0.0000 0.0000 0.4448
{a,b} 0.0011 1.0000 0.0000 0.0000 0.0000 0.0000 0.0011 1.0000
{a,c} 0.0312 0.9574 0.0312 0.0312 0.0312 0.0312 0.0312 0.9760
{a,d} 0.0000 0.9478 0.0000 0.0000 0.0000 0.0000 0.0000 0.9707
{b,c} 0.0522 1.0000 0.0512 0.0512 0.0512 0.0282 0.0293 1.0000
{b,d} 0.0426 0.9688 0.0416 0.0415 0.0415 0.0229 0.0240 0.9688
{c,d} 0.0000 0.9989 0.0000 0.0000 0.0000 0.0000 0.0000 0.9989
{a, b, c} 0.5782 1.0000 0.4947 0.4947 0.4947 0.4947 0.5552 1.0000
{a, b, d} 0.0426 1.0000 -0.0000 0.0000 0.0000 0.0000 0.0240 1.0000
{a,c, d} 0.0312 0.9989 0.0000 -0.0000 0.0000 0.0000 0.0312 0.9989
{b, ¢, d} 0.0522 1.0000 0.0000 0.0000 -0.0415 0.0000 0.0522 1.0000
{a, b,c, d} 0.9999 1.0000 0.0000 0.0000 0.0000 0.4217 0.9999 1.0000
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Figure 1P~ and P~ for lognormal distributions withmi
[0.6,0.8] and s T [0.4,0.5] and bounding belief and
plausibility functions obtained from IRM

Example 3: Table 4 presents the results where mi [0.1,
1.0] and s T [0.1, 0.5]. Here the error given by the IRM
belief function isE(Bel )= 0.0052

4 Combining information from different
sour ces

If more than one source of information is available
relating to some uncertain parameter x; a mechanism is
required to combine the various sources. The two most
common approaches for constructing a random set from
various sources are (i) averaging and (ii) Dempster’s rule
of combination. The set union version of Dempster’s rule
of combination provides athird alternative.

4.1 Averaging

Suppose there are n alternative random sets describing
some variable x, each one corresponding to an
independent source of information. One interpretation of
the situation is to suppose that only one of the sources of
information is correct, so, in the absence of any
information about which source is true, an unbiased
combination of the n random sets should be adopted. For
each focal element Al P(X)

mA) = Z& m,(A) @0)
nia
Baldwin et al. (1995) use an analogous approach, which
they refer to as a ‘voting model’, for the construction of
fuzzy sets by assimilating multiple sources of
information to which a consonance condition is applied.

In the case when each of n sources of information is a
single but in each case different setAq, A,,..., Ay, then the
averaging treats each of these sets as a focal element and

assigns a mass of 1/n to each A; of these focal elements.

If the sets are nested then the resulting random set will be
consonant.

In the case when the unknown parameters are specified
as n lower and upper probability distributions then to
combine the various items of evidence involves first
finding a random set (A;, m) : i = 1...,n with
corresponding belief and plausibility distributions that
bound the lower and upper probability distributions,
using the IRM, and then obtaining a merged random set
(A, m such that



A={JA (31)

and m(A) " Al A isobtained from Equation 30.

Example 4: Suppose that a parameter b corresponds to
lognormal distributions In b ~ N(ms) with the mean m
and standard deviation s specified, respectively, by
closed intervals M = [m, m] and S = [s1, S,;] where the
three information sources are as follows (Challenge
Problem 5a)

M = [0.6, 0.8], M, = [0.2, 0.9], Mg = [0.0, 1.0]
S,=[0.3,04], S, =[0.2, 0.45], S = [0.1, 0.5]

In Figure 2 the three lower and upper cumulative
probability distributions are plotted, together with the
cumulative belief and plausibility distributions
corresponding to the combined random set obtained by
averaging. In this example the IRM generated errors
E(Bel;) = 0.0222, E(Bel,) = 0.0398, E(Bel3) = 0.0083.
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Figure 2Belief and plausibility distributions
corresponding to combined lower and upper probability
distributions from averaging

4.2 Dempster’srule of combination

Dempster's rule (Shafer 1976) is a well-known
mechanism for fusing evidence from different
independent sources. Dempster’s rule is thought of as
being applicable to the situation where each information
source provides some imprecise yet correct and
consistent information about an unknown quantity or
proposition. Suppose there are two items of evidence
expressed as two mass assignmentsm; and mp on P(X)

[o]

a m(B).m,(C)

A — BGC=A 32

My (A) = 24— —— (32)
for At 0, where

K= & m(B).myC) (33)

BCC=/&

and my »(9)=0.

Example 5. Dempster's rule has been applied to the
same problem as Exanple 4 Challenge Problem 5a).
The cumulative belief and plausibility distributions
corresponding to the combined random set are illustrated
in Figure 3.

In the case when each of n sources of information is a
single, but in each cese different, set Ay, Ay,..., Ay, then
Dempster’s rule of combination will result in a mass of
unity being applied to the intersection A;CAC...CA,,
provided A;CAC...CA, 1 0. When A\.CA,C..CA,* O
then no combination is defined.

Dempster’s rule has been criticised from generating
counter-intuitive results in situations where the
information to be combined is not consistent (Zadeh
1986, Walley 1991). These situations do not correspond
with the semantic description given above of the
situations to which the rule is applicable, so the counter-
intuitive results are unsurprising. In situations of
significant inconsistency or conflict, averaging or the set
union version of Dempster’s rule of combination is more
applicable.

—--—--Source 1

++=--=-Source 2
- ——-Source 3

Combined

Lower and upper cumulative probabilities
from 3 sources and combined cumulative

Parameter b

Figure 3 Bounds on three cumulative probability
distributions and the combined distribution from the
Dempster’ s rule of combination (Example 5)

4.3 Set union version of Dempster’s rule of
combination

Suppose there are two items of evidence expressed as
two mass assignments m, and m, on P(X), then the set
union version of Dempster’ s rule of combination is

m,(A)= 4 m (B)m,(C) 34)

BEC=A



In this case the combination of evidence is consistent
with the belief that one or other (or both) of the experts
are correct. Thisisin contrast to Dempster's Rule where,
up to inconsistency, it is assumed that both experts are
correct.

In the case when each of n sources of information is a
single, but in each case different, set Ay, A,..., Ay, then
the set union version of Dempster’s rule of combination
will result in a mass of unity being applied to the union
AEAE...EA, which is clearly aso applicable in
situations of conflicting evidence.

Example 6: The set union version of Dempster’srule has
been applied to the same problem as Example 4
(Challenge Problem 5a). The cumulative belief and
plausibility distributions corresponding to the combined
random set are illustrated in Figure 4.
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Figure 4 Bounds on three cumulative probability
distributions and the combined distribution from the set
union version of Dempster’ srule (Example 6

Example 7: Toillustrate the final stage in the random set
analysis consider the function

y=(a+b)® (35

Suppose that evidence of parameter a is provided by
three independent sources who specify that a is in the
closedinterval A, for which they provide the estimates A
=[0.5,0.7],A, =[0.3,0.8], Az =[0.1, 1.0]. Parameter b is
given by the probability distributions addressed in
Examples 4, 5 and 6. Figure 5 illustrates three estimates
of the cumulative belief and plausibility distributions of
y, corresponding to estimates of b generated using the
IRM in Examples 4, 5 and 6.
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Figure 5 Cumulative belief and plausibility distributions
ony=(a+b)?

5 Conclusons

Random set theory provides a general framework
encompassing interval bounds, fuzzy sets and discrete
probability distributions. The random set extension
principle introduced by Dubois and Prade (1991) enables
random sds to be projected through functional
relationships describing system behaviour in order to
generate a random set on the system response. In general
this will involve the solution to a double optimisation
problem, though when the vertex method is applicable
the computational burden is significantly reduced.

This paper has addressed two aspects of a random set
approach to the Challenge Problems of Oberkampf et al.
(2001). The Iterative Rescaling Method has been
proposed for generating a random set and corresponding
belief and plausibility functions that are an outer
approximation to lower and upper probability
distributions. The Iterative Rescaling Method generates a
low average error on problems of a practical scale. Three
approaches to combining information from different
sources have been illustrated with examples. Of these the
averaging has the attraction of general applicability,
computational ease and  accessible  semantic
interpretation.
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